Design of Schiff Base-Like Postmetallocene Catalytic Systems for Polymerization of Olefins: IX.* Synthesis of Salicylaldehydes Containing an Isobornyl Substituent and Hydroxyphenyl Imine Ligands Based Thereon

I. I. Oleinik ${ }^{a}$, V. E. Romanov ${ }^{a}$, I. V. Oleinik ${ }^{a}$, and S. S. Ivanchev ${ }^{b}$
${ }^{a}$ Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia
e-mail: oleynik@nioch.nsc.ru
${ }^{b}$ St. Petersburg Branch, Boreskov Institute of Catalysis, Siberian Division, Russian Academy of Sciences, St. Petersburg, Russia
Received July 2, 2007

Abstract

Reactions of substituted 2-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenols with paraformaldehyde in the presence of $\operatorname{tin}(I V)$ chloride and 2,6-dimethylpyridine gave the corresponding salicylaldehydes which reacted with primary amines to produce a series of new Schiff bases as ligands for complex formation with transition metals.

DOI: 10.1134/S1070428008010132

Hydroxyphenyl imine titanium and zirconium complexes attract attention due to their high catalytic activity in polymerization of olefins. In addition, catalytic systems based on such complexes ensure preparation of a broad spectrum of polyolefins with various parameters via variation of the ligand structure, which changes the polymerization mechanism [2, 3]. Substituents in the ligand affect the catalytic activity of the complexes derived therefrom in different modes, depending on the substituent nature and position. The catalytic activity sharply increases as the size of substituent in the 3-position of the ligand rises, while large substituents on the imino nitrogen atom reduce the catalytic activity [4]. The effect of substituent in the 5 -position of the ligand on the catalytic activity remains unclear because of limited relevant experimental data.

As shown in [3], zirconium complexes with salicylaldehyde imine ligands having a cage-like group, 1 -adamantyl substituent, in the 3 -position are active in the polymerization of ethylene promoted by methylalumoxane. However, these data give no grounds to

[^0]predict how the catalytic activity of complexes will change upon variation of substituents in position 5 and on the imino nitrogen atom via replacement of the adamantyl fragment by other bulky groups.

While performing systematic studies in the field of structural modification of metal complexes and their catalytic activity [5], we believed it to be necessary to elucidate the effect of substituents in position 5 and on the imino nitrogen atom in salicylaldehyde imine ligands having a rigid cage-like substituent in the 3 -position on the catalytic activity of complexes derived therefrom, as compared to analogous ligands containing such substituent as tert-butyl, 1-phenylethyl, 1-(4-tert-butylphenyl)ethyl, 1-phenyl-1-methylethyl, or triphenylmethyl groups in the 3-position.

In order to synthesize such complexes, a set of salicylaldehydes having cage-like substituents is required, for the corresponding hydroxyphenyl imine ligands are obtained by reaction of primary amines with aldehydes. On the basis of economy and accessibility considerations, we selected a cage-like isobornyl (1,7,7-tri-methylbicyclo[2.2.1]hept-exo-2-yl) substituent which can be readily introduced into the ortho position of

phenol via reaction with camphene in the presence of a catalytic amount of aluminum phenoxide [6, 7]. A series of isobornyl-substituted phenols was obtained by alkylation of phenol, p-methylphenol, p-tert-butylphenol, and p-(1-methyl-1-phenylethyl)phenol with $(-)$-camphene in the presence of the corresponding aluminum phenoxides at $150-160^{\circ} \mathrm{C}$ according to the procedure described in [7]. We thus obtained racemic phenols I-III (Scheme 1), and the structure of the terpene substituent therein was confirmed by the ${ }^{1}$ H NMR data. p-(1-Methyl-1-phenylethyl)phenol failed to react with camphene.

The most appropriate procedure for selective orthoformylation of phenols having bulky substituents is based on the reaction with paraformaldehyde in the presence of tin(IV) chloride and 2,6-dimethylpyridine [8]. Using this procedure, from phenols I-III we synthesized the corresponding substituted salicylaldehydes IV-VI in $50-55 \%$ yield (Scheme 1); the structure of IV-VI was confirmed by the analytical and spectral data. In the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds, the OH proton signal was displaced downfield ($\delta 11.33-$ 11.51 ppm) relative to its position in the spectra of the initial phenols ($\delta 4.23-4.50 \mathrm{ppm}$) due to intramolecular hydrogen bonding.

Taking into account published data on the activity of transition metal complexes in catalytic systems for olefin polymerization $[2,3,5,9]$, we selected a set of
most promising amines VIIa-VIIf for the synthesis of hydroxyphenyl imine ligands VIII-X. Schiff bases like VIII-X are usually prepared by heating initial salicylaldehydes and amines in alcohol (methanol or ethanol) in the presence of a catalytic amount of an acid or dehydrating agent or by heating in a boiling inert solvent with simultaneous removal of the liberated water as azeotrope or in the presence of p-toluenesulfonic acid.

By heating salicylaldehydes IV-VI with cyclohexylamine (VIIa), 2-cyclopentyl-4,6-dimethylaniline (VIIb), 2-cyclohexyl-4,6-dimethylaniline (VIIc), and racemic 1,7,7-trimethylbicyclo[2.2.1]heptan-exo-2amine (VIId) in boiling methanol containing a catalytic amount of anhydrous formic acid we obtained the corresponding Schiff bases VIIIa-VIIId, IXa-IXd, and $\mathbf{X a}-\mathbf{X d}$ (Scheme 1) which were isolated in 74$92 \%$ yield. Salicylaldehyde imines VIIIe, IXe, and Xe were synthesized by heating aldehydes IV-VI with racemic 1-(1-adamantyl)ethanamine (VIIe) and an equimolar amount of triethylamine in boiling methanol. Their yields were $72-92 \%$. Aldehydes IV-VI reacted with less nucleophilic pentafluoroaniline (VIIf) in methanol very slowly; therefore, the condensation was carried out using toluene as solvent, p-toluenesulfonic acid as acid catalyst, and anhydrous CaSO_{4} as dehydrating agent. Under these conditions, we succeeded in isolating $52-66 \%$ of fluorinated Schiff bases VIIIf, IXf, and Xf.

The structure of Schiff bases VIII-X was proved by their elemental compositions and spectral parameters. In the ${ }^{1} \mathrm{H}$ NMR spectra of VIII-X, the $\mathrm{N}=\mathrm{CH}$ proton signal appeared as a singlet at $\delta 8.06-8.8 \mathrm{ppm}$, and the OH proton gave rise to a singlet at $\delta 12.26-$ 13.60 ppm . The downfield shift of the latter signal relative to the corresponding signal of the initial phenol is likely to result from intramolecular hydrogen bonding (as in the spectra of salicylaldehydes IV-VI; see above). Schiff bases VIIId, VIIIe, IXd, IXe, Xd, and $\mathbf{X e}$ having a chiral substituent on the imino nitrogen atom showed in the ${ }^{1} \mathrm{H}$ NMR spectra two OH signals due to the presence of diastereoisomers. The IR spectra of Schiff bases VIII-X contained an intense absorption band at $1614-1631 \mathrm{~cm}^{-1}$ due to stretching vibrations of the azomethine $\mathrm{C}=\mathrm{N}$ bond, and strong molecular ion peaks were present in their mass spectra.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker WP-200SY spectrometer at 200.13 MHz from solutions in carbon tetrachloride using hexamethyldisiloxane as internal reference. The IR spectra were recorded in KBr or from thin films (neat) on a Vector 22 spectrometer. The progress of reactions and the purity of products were monitored by TLC on Silufol UV-254 plates using hexane as eluent. Flash chromatography [10] was performed on silica gel $5-40 \mu \mathrm{~m}$ using chloroform-hexane $(1: 2)$ as eluent. The elemental compositions were determined from the high-resolution mass spectra which were run on a Finnigan MAT8200 mass spectrometer. The melting points were determined by heating samples placed between glass plates at a rate of $1 \mathrm{deg} / \mathrm{min}$.

2-Cyclopentyl- and 2-cyclohexyl-4,6-dimethylanilines were synthesized according to the procedure described in [11]; 1-(1-adamantyl)ethanamine hydrochloride was isolated by chloroform extraction of the active substance from commercial drug Rimantadine, and racemic 1,7,7-trimethylbicyclo[2.2.1]heptan-exo2 -amine was prepared as reported in [12]. 2-(1,7,7-Tri-methylbicyclo[2.2.1]hept-exo-2-yl)phenol (I) was synthesized as described in [7], and para-substituted derivatives II and III were prepared according to a modified procedure (see below).

4-Substituted 2-(1,7,7-trimethylbicyclo[2.2.1]-hept-exo-2-yl)phenols II and III (general procedure). p-Methylphenol or p-tert-butylphenol, 0.4 mol , was heated to $210-220^{\circ} \mathrm{C}$, and $0.8 \mathrm{~g}(0.03 \mathrm{~mol})$ of aluminum powder was added under vigorous stirring. When
the mixture became homogeneous, it was cooled to $130^{\circ} \mathrm{C}, 27.2 \mathrm{~g}(0.2 \mathrm{~mol})$ of (-)-camphene was added, and the mixture was stirred for 8 h at $150-160^{\circ} \mathrm{C}$, cooled to room temperature, and treated with 5 ml of concentrated hydrochloric acid, 45 ml of water, and 100 ml of diethyl ether. The organic phase was separated, the aqueous phase was extracted with diethyl ether $(3 \times 50 \mathrm{ml})$, the extracts were combined with the organic phase, washed with water until neutral reaction and with a saturated aqueous solution of sodium chloride, and dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was subjected to distillation under reduced pressure. Compounds II and III were additionally purified by recrystallization from hexane.

4-Methyl-2-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (II). Yield 67%, bp $146-148^{\circ} \mathrm{C}$ $(2 \mathrm{~mm}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 0.74 \mathrm{~s}$ $\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.82 \mathrm{~s}$ and $0.87 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $8^{\prime}-\mathrm{Me}$, $\left.9^{\prime}-\mathrm{Me}\right), 1.21-1.39 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 1.42-1.63 \mathrm{~m}(3 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.76-1.88 \mathrm{~m}\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 2.09-2.19 \mathrm{~m}$ $\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.23 \mathrm{~s}(3 \mathrm{H}, 4-\mathrm{Me}), 3.06$ br.t $\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$, $J=8.8), 4.23 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}), 6.48 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}, J=8.1)$, $6.71 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, 5-\mathrm{H}, J=8.1,1.2), 6.96 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}$, $J=1.2$) (cf. [13]).

4-tert-Butyl-2-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (III). Yield 62%, bp $152-155^{\circ} \mathrm{C}$ $(1 \mathrm{~mm}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 0.71 \mathrm{~s}$ $\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.76 \mathrm{~s}$ and $0.84 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $8^{\prime}-\mathrm{Me}$, $\left.9^{\prime}-\mathrm{Me}\right), 1.18 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.21-1.39 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right)$, $1.44-1.67 \mathrm{~m}\left(3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.79-1.91 \mathrm{~m}\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right.$, $\left.5^{\prime}-\mathrm{H}\right), 2.05-2.16 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.2 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=\right.$ $8.7), 4.5 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}), 6.55 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}, J=8.2)$, 6.94 d.d $(1 \mathrm{H}, 5-\mathrm{H}, J=8.2,1.2), 7.26 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}$, $J=1.2$). Found: $[M]^{+} 286.22947 . \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}$. Calculated: M 286.22967.

Salicylaldehydes IV-VI (general procedure). Tin(IV) chloride, $0.47 \mathrm{ml}(0.004 \mathrm{~mol})$, was added to a mixture of 0.04 mol of phenol I-III, 40 ml of toluene, and $1.87 \mathrm{ml}(0.016 \mathrm{~mol})$ of 2,6-dimethylpyridine under stirring in an argon atmosphere. The suspension was stirred for 1 h at room temperature, 2.64 g $(0.088 \mathrm{~mol})$ of paraformaldehyde was added, and the mixture was heated for 10 h under reflux at a bath temperature of $115-125^{\circ} \mathrm{C}$. The mixture was then cooled to room temperature, diluted with 20 ml of diethyl ether, and treated with 2 N hydrochloric acid to pH 2 . The organic phase was separated, the aqueous phase was extracted with diethyl ether ($3 \times 20 \mathrm{ml}$), the extracts were combined with the organic phase, washed with water until neutral reaction and with a saturated
aqueous solution of sodium chloride, and dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was distilled under reduced pressure. The product was additionally purified by recrystallization from methanol.

2-Hydroxy-3-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)benzaldehyde (IV). Yield 55%, bp 140$142^{\circ} \mathrm{C}(1 \mathrm{~mm}), \mathrm{mp} 75-78^{\circ} \mathrm{C}$. IR spectrum: $v 1658 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 0.75 \mathrm{~s}(3 \mathrm{H}$, $\left.10^{\prime}-\mathrm{Me}\right), 0.83 \mathrm{~s}$ and $0.86 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right)$, $1.29-1.41 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 1.49-1.67 \mathrm{~m}\left(3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $1.79-1.91 \mathrm{~m}\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 2.08-2.17 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 3.33 br.t ($1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9$), $6.96 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}, J=8.2)$, $7.35 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=8.2), 7.56 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}, J=8.2)$, $9.86 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 11.51 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+}$258.16185. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}$. Calculated: $M 258.16198$.

2-Hydroxy-5-methyl-3-(1,7,7-trimethylbicyclo-[2.2.1]hept-exo-2-yl)benzaldehyde (V). Yield 52\%, bp $158-160^{\circ} \mathrm{C}(3 \mathrm{~mm}), \mathrm{mp} 82-84^{\circ} \mathrm{C}$. IR spectrum: v $1652 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 0.73 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.84 \mathrm{~s}$ and $0.86 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.22-1.41 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 1.48-$ $1.65 \mathrm{~m}\left(3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.72-1.88 \mathrm{~m}\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right)$, $2.02-2.19 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.31 \mathrm{~s}(3 \mathrm{H}, 4-\mathrm{Me}), 3.28$ br.t $\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9\right), 7.06 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}), 7.27 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H})$, $9.78 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 11.33 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$ (cf. [13]).

5-tert-Butyl-2-hydroxy-3-(1,7,7-trimethylbicyclo-[2.2.1]hept-exo-2-yl)benzaldehyde (VI). Yield 55\%, bp $146-148^{\circ} \mathrm{C}(1 \mathrm{~mm}), \mathrm{mp} 93-95^{\circ} \mathrm{C}$. IR spectrum: $v 1646 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 0.75 \mathrm{~s}$ ($3 \mathrm{H}, 10^{\prime}-\mathrm{Me}$), 0.84 s and $0.87 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $8^{\prime}-\mathrm{Me}$, $\left.9^{\prime}-\mathrm{Me}\right), 1.29 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.30-1.43 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right)$, $1.49-1.68 \mathrm{~m}\left(3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.75-1.87 \mathrm{~m}\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right.$, $\left.5^{\prime}-\mathrm{H}\right), 2.03-2.15 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.31 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=\right.$ $8.6 \mathrm{~Hz}), 7.21 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}), 7.55 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}), 9.81 \mathrm{~s}(1 \mathrm{H}$, CHO), $11.36 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 314.22447$. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}$. Calculated: M 314.22457 .

Salicylaldehyde imines VIIIa-VIIId, IXa-IXd, and $\mathbf{X a}-\mathbf{X d}$ (general procedure). A mixture of 1 mmol of aldehyde IV-VI, 10 ml of methanol, 1 mmol of amine VIIa-VIId, and 10 mg of 99% formic acid was heated for $6-12 \mathrm{~h}$ under reflux with stirring until the initial compounds disappeared according to the TLC data. The mixture was cooled, and the light yellow precipitate was filtered off, washed with 5 ml of methanol, and dried in air.

2-Cyclohexyliminomethyl-6-(1,7,7-trimethylbi-cyclo[2.2.1]hept-exo-2-yl)phenol (VIIIa). Yield 76\%, mp $91-93^{\circ} \mathrm{C}$. IR spectrum: v $1628 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C})$. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 0.75 \mathrm{~s}(3 \mathrm{H}$,
$\left.10^{\prime}-\mathrm{Me}\right), 0.83 \mathrm{~s}$ and $0.88 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right)$, $1.21-1.42 \mathrm{~m}\left(3 \mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), $1.48-1.63 \mathrm{~m}$ ($7 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclohexyl), $1.72-1.88 \mathrm{~m}(6 \mathrm{H}$, $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclohexyl), $2.00-2.17 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, $3.11-3.24 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.33 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9\right), 6.69 \mathrm{t}$ ($1 \mathrm{H}, 4-\mathrm{H}, J=8.5$), $6.92 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=8.5), 7.23 \mathrm{~d}$ ($1 \mathrm{H}, 3-\mathrm{H}, J=8.5$), $8.30 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.51 \mathrm{br} . \mathrm{s}(1 \mathrm{H}$, OH). Found: $[M]^{+} 339.25656 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}$. Calculated: M 339.25620.

2-Cyclohexyliminomethyl-4-methyl-6-(1,7,7-trimethylbicyclo $\mathbf{2 . 2 . 1}^{2}$ hept-exo-2-yl)phenol (IXa). Yield 74%, mp $122-123^{\circ} \mathrm{C}$. IR spectrum: v $1630 \mathrm{~cm}^{-1}$ $(\mathrm{N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 0.74 \mathrm{~s}(3 \mathrm{H}$, $\left.10^{\prime}-\mathrm{Me}\right), 0.82 \mathrm{~s}$ and $0.87 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}$), $1.23-1.41 \mathrm{~m}\left(3 \mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), $1.47-1.68 \mathrm{~m}$ ($7 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclohexyl), 1.71-1.91 m (6 H , $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclohexyl), $2.01-2.18 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, $2.25 \mathrm{~s}(3 \mathrm{H}, 4-\mathrm{Me}), 3.05-3.16 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.30 \mathrm{t}$ $\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9\right), 6.72 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}), 7.02 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H})$, $8.24 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.25$ br.s $(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 353.27256 . \mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}$. Calculated: $M 353.27185$.

4-tert-Butyl-2-cyclohexyliminomethyl-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (Xa). Yield 78%, mp $73-75^{\circ} \mathrm{C}$. IR spectrum: $v 1631 \mathrm{~cm}^{-1}$ $(\mathrm{N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 0.75 \mathrm{~s}(3 \mathrm{H}$, $\left.10^{\prime}-\mathrm{Me}\right), 0.83 \mathrm{~s}$ and $0.89 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right)$, $1.26 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.23-1.41 \mathrm{~m}\left(3 \mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), $1.48-1.68 \mathrm{~m}\left(7 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), $1.72-1.89 \mathrm{~m}\left(6 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), 2.01$2.19 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.08-3.21 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.32 \mathrm{t}$ $\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9 \mathrm{~Hz}\right), 6.85 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}), 7.29 \mathrm{~s}(1 \mathrm{H}$, $3-\mathrm{H}), 8.31 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.26$ br.s $(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+}$395.31910. $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}$. Calculated: $M 395.31880$.

2-(2-Cyclopentyl-4,6-dimethylphenyliminometh-yl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (VIIIb). Yield 88%, mp $98-100^{\circ} \mathrm{C}$. IR spectrum: $v 1621 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, H z): 0.81 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.84 \mathrm{~s}$ and $0.90 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.20-1.40 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 1.51-$ $1.68 \mathrm{~m}\left(7 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclopentyl), $1.71-1.95 \mathrm{~m}$ ($6 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclopentyl), 2.13 s and 2.27 s (3 H each, $4^{\prime \prime}-\mathrm{Me}, 6^{\prime \prime}-\mathrm{Me}$), 2.15-2.23 m ($1 \mathrm{H}, 3^{\prime}-\mathrm{H}$), $2.88-3.16 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.42 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9\right)$, $6.73-6.88 \mathrm{~m}\left(3 \mathrm{H}, 4-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.03 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}$, $J=8.5), 7.35 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}, J=8.5), 8.23 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, $13.33 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 429.30201 . \mathrm{C}_{30} \mathrm{H}_{39} \mathrm{NO}$. Calculated: $M 429.30205$.

2-(2-Cyclopentyl-4,6-dimethylphenyliminometh-yl)-4-methyl-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (IXb). Yield 81%, mp 134-136 ${ }^{\circ} \mathrm{C}$. IR
spectrum: v $1624 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.79 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right) ; 0.84 \mathrm{~s}$ and $0.89 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right) ; 1.24-1.81 \mathrm{~m}\left(14 \mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$, $6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclopentyl); 2.14-2.23 m ($1 \mathrm{H}, 3^{\prime}-\mathrm{H}$); 2.11 s , 2.27 s , and 2.29 s (3 H each, $4-\mathrm{Me}, 4^{\prime \prime}-\mathrm{Me}, 6^{\prime \prime}-\mathrm{Me}$); $2.85-3.02 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}) ; 3.45 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9 \mathrm{~Hz}\right)$; $6.76 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}) ; 6.81 \mathrm{~s}$ and $6.84 \mathrm{~s}\left(1 \mathrm{H}\right.$ each, $3^{\prime}-\mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right) ; 7.13 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}) ; 8.17 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 13.07 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 443.31871 . \mathrm{C}_{31} \mathrm{H}_{41} \mathrm{NO}$. Calculated: $M 443.31880$.

4-tert-Butyl-2-(2-cyclopentyl-4,6-dimethylphen-yliminomethyl)-6-(1,7,7-trimethylbicyclo[2.2.1]-hept-exo-2-yl)phenol (Xb). Yield 87%, mp 48-50 ${ }^{\circ} \mathrm{C}$. IR spectrum: $v 1622 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.82 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.85 \mathrm{~s}$ and $0.91 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.29 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.30-1.92 \mathrm{~m}$ (14H, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclopentyl), 2.02$2.09 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.13 \mathrm{~s}$ and $2.27 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $4^{\prime \prime}-\mathrm{Me}$, $\left.6^{\prime \prime}-\mathrm{Me}\right), 2.85-3.08 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.39 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=\right.$ $9 \mathrm{~Hz}), 6.77 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}), 6.84 \mathrm{~s}$ and $6.95 \mathrm{~s}(1 \mathrm{H}$ each, $\left.3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.41 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}), 8.22 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, $13.1 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 485.36574 . \mathrm{C}_{34} \mathrm{H}_{47} \mathrm{NO}$. Calculated: $M 485.36617$.

2-(2-Cyclohexyl-4,6-dimethylphenyliminometh-yl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (VIIIc). Yield 92%, mp $154-156^{\circ} \mathrm{C}$. IR spectrum: v $1619 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 0.81 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.84 \mathrm{~s}$ and $0.90 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.20-1.41 \mathrm{~m}\left(5 \mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), $1.51-1.68 \mathrm{~m}\left(5 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), $1.71-1.93 \mathrm{~m}\left(6 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl), $1.98-2.09 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.13 \mathrm{~s}$ and $2.28 \mathrm{~s}(3 \mathrm{H}$ each, $\left.4^{\prime \prime}-\mathrm{Me}, 6^{\prime \prime}-\mathrm{Me}\right), 2.48-2.63 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.43 \mathrm{t}(1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}, J=9\right), 6.73-6.85 \mathrm{~m}\left(3 \mathrm{H}, 4-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right)$, $7.06 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=8.5), 7.37 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}, J=8.5)$, $8.23 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.34 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 443.31880 . \mathrm{C}_{31} \mathrm{H}_{41} \mathrm{NO}$. Calculated: $M 443.31880$.

2-(2-Cyclohexyl-4,6-dimethylphenyliminometh-yl)-4-methyl-6-(1,7,7-trimethylbicyclo $\mathbf{2} 2.2 .1$]hept-exo-2-yl)phenol (IXc). Yield 82%, mp $186-187^{\circ} \mathrm{C}$. IR spectrum: v $1625 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.80 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right) ; 0.84 \mathrm{~s}$ and $0.89 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right) ; 1.18-1.43 \mathrm{~m}\left(5 \mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl); 1.52-1.67 m (5H, $3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclohexyl); $1.69-1.88 \mathrm{~m}\left(6 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, \mathrm{CH}_{2}\right.$, cyclohexyl); 2.01$2.09 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right) ; 2.11 \mathrm{~s}, 2.27 \mathrm{~s}$, and $2.29 \mathrm{~s}(3 \mathrm{H}$ each, 4-Me, $\left.4^{\prime \prime}-\mathrm{Me}, 6^{\prime \prime}-\mathrm{Me}\right) ; 2.43-2.65 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}) ; 3.43 \mathrm{t}$ $\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9 \mathrm{~Hz}\right) ; 6.74-6.84 \mathrm{~m}\left(3 \mathrm{H}, 5-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right.$, $\left.5^{\prime \prime}-\mathrm{H}\right) ; 7.04 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}) ; 8.16 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) ; 13.07 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 457.33586 . \mathrm{C}_{32} \mathrm{H}_{43} \mathrm{NO}$. Calculated: $M 457.33445$.

4-tert-Butyl-2-(2-cyclohexyl-4,6-dimethylphenyl-iminomethyl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (Xc). Yield $77 \%, \mathrm{mp} 66-68^{\circ} \mathrm{C}$. IR spectrum: v $1622 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.82 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.85 \mathrm{~s}$ and $0.91 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.3 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.32-2.07 \mathrm{~m}(17 \mathrm{H}$, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{CH}_{2}$, cyclohexyl), 2.14 s and 2.27 s (3 H each, $4^{\prime \prime}-\mathrm{Me}, 6^{\prime \prime}-\mathrm{Me}$), $2.47-2.65 \mathrm{~m}(1 \mathrm{H}$, CHN), $3.42 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9 \mathrm{~Hz}\right), 6.78 \mathrm{~s}$ and 6.81 s (1 H each, $\left.3^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 6.97 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=1.2 \mathrm{~Hz}$), $7.42 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}, J=1.2 \mathrm{~Hz}), 8.22 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, 13.12 br.s ($1 \mathrm{H}, \mathrm{OH}$). Found: $[M]^{+} 499.38139$. $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{NO}$. Calculated: $M 499.38233$.

2-(1,7,7-Trimethylbicyclo[2.2.1]hept-exo-2-yl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yliminomethyl)phenol (VIIId). Yield 88%, mp $157-159^{\circ} \mathrm{C}$. IR spectrum: v $1623 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.72 s and $0.74 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.10^{\prime}-\mathrm{Me}, 10^{\prime \prime}-\mathrm{Me}\right)$, 0.77 s and $0.82 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.9^{\prime}-\mathrm{Me}, 9^{\prime \prime}-\mathrm{Me}\right), 0.88 \mathrm{~s}$ and 0.90 s (3 H each, $8^{\prime}-\mathrm{Me}, 8^{\prime \prime}-\mathrm{Me}$), $1.15-1.42 \mathrm{~m}(2 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 1.48-1.65 \mathrm{~m}\left(6 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right)$, $1.71-1.93 \mathrm{~m}\left(4 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 1.93-2.16 \mathrm{~m}$ ($2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}$), 3.13 d.d ($1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, J=9,8 \mathrm{~Hz}$), $3.33 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9 \mathrm{~Hz}\right), 6.69 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}, J=$ $8.5 \mathrm{~Hz}), 6.93 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=8.5 \mathrm{~Hz}), 7.23 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}$, $J=8.5 \mathrm{~Hz}), 8.12 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.26 \mathrm{~s}$ and 13.31 s $(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+}$393.30315. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}$. Calculated: M 393.30315.

4-Methyl-2-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2yliminomethyl)phenol (IXd). Yield 84\%, mp 154$156^{\circ} \mathrm{C}$. IR spectrum: $v 1627 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 0.76 \mathrm{~s}$ and $0.83 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $10^{\prime}-\mathrm{Me}$, $\left.10^{\prime \prime}-\mathrm{Me}\right), 0.88 \mathrm{~s}$ and $0.9 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.9^{\prime}-\mathrm{Me}, 9^{\prime \prime}-\mathrm{Me}\right)$, 0.93 s and $0.97 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $8^{\prime}-\mathrm{Me}, 8^{\prime \prime}-\mathrm{Me}$), $1.13-1.41 \mathrm{~m}$ ($2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}$), 1.47-1.68 m ($6 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}$, $\left.6^{\prime \prime}-\mathrm{H}\right), 1.75-1.89 \mathrm{~m}\left(4 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 1.96-$ $2.12 \mathrm{~m}\left(2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 2.25 \mathrm{~s}(3 \mathrm{H}, 4-\mathrm{Me}), 3.11 \mathrm{~d} . \mathrm{d}$ $\left(1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, J=9,8 \mathrm{~Hz}\right), 3.3 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=8.5 \mathrm{~Hz}\right)$, $6.72 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}), 7.03 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}), 8.06 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, 12.98 s and $13.03 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 407.31922$. $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NO}$. Calculated: $M 407.31880$.

4-tert-Butyl-2-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2yliminomethyl)phenol (Xd). Yield 90%, mp $88-90^{\circ} \mathrm{C}$. IR spectrum: v $1628 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm ($J, \mathrm{~Hz}$): 0.74 s and $0.76 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $10^{\prime}-\mathrm{Me}$, $\left.10^{\prime \prime}-\mathrm{Me}\right), 0.77 \mathrm{~s}$ and $0.79 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.9^{\prime}-\mathrm{Me}, 9^{\prime \prime}-\mathrm{Me}\right)$, 0.85 s and $0.91 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.8^{\prime}-\mathrm{Me}, 8^{\prime \prime}-\mathrm{Me}\right), 1.26 \mathrm{~s}(9 \mathrm{H}$, t-Bu), 1.3-1.42 m (2H, $\left.5^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 1.54-1.69 \mathrm{~m}(6 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 1.71-1.87 \mathrm{~m}\left(4 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$,
$\left.4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 1.91-2.12 \mathrm{~m}\left(2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 3.12 \mathrm{~d} . \mathrm{d}$ $\left(1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, J=9,8 \mathrm{~Hz}\right), 3.33 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=8.5 \mathrm{~Hz}\right)$, $6.89 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H}), 7.32 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}), 8.12 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, 13.01 s and $13.05 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 449.36574$. $\mathrm{C}_{31} 4-\mathrm{H}_{7} \mathrm{NO}$. Calculated: $M 449.36671$.

Salicylaldehyde imines VIIIe, IXe, and Xe (general procedure). Triethylamine, $0.14 \mathrm{ml}(1 \mathrm{mmol})$, was added to a mixture of 1 mmol of salicylaldehyde IVVI, 10 ml of methanol, and $0.216 \mathrm{~g}(1 \mathrm{mmol})$ of 1-(1-adamantyl)ethanamine hydrochloride, and the mixture was heated for 12 h under reflux with stirring (until the initial compounds disappeared according to the TLC data). The solvent was distilled off, the residue was dissolved in chloroform, the solution was washed with water, dried over sodium sulfate, and evaporated, and the residue was subjected to flash chromatography. The eluate was evaporated, and the bright yellow solid residue was recrystallized from methanol.

2-[1-(1-Adamantyl)ethyliminomethyl]-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (VIIIe). Yield 72%, mp $192-194^{\circ} \mathrm{C}$. IR spectrum: $v 1630 \mathrm{~cm}^{-1}$ $(\mathrm{N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 0.74 \mathrm{~s}$ and $0.79 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.83 \mathrm{~s}$ and $0.89 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $8^{\prime}-\mathrm{Me}$, $\left.9^{\prime}-\mathrm{Me}\right), 1.12-1.89 \mathrm{~m}\left(21 \mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right.$, H_{Ad}), 1.99 br.s ($3 \mathrm{H}, 1^{\prime \prime}-\mathrm{Me}$), $2.07-2.19 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, $2.68-2.83 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.37 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9\right), 6.73 \mathrm{t}$ $(1 \mathrm{H}, 4-\mathrm{H}, J=8.5), 6.91 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=8.5), 7.25 \mathrm{~d}$ $(1 \mathrm{H}, 3-\mathrm{H}, J=8.5), 8.18 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.58 \mathrm{~s}$ and $13.60 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 419.31900 . \mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}$. Calculated: M 419.31880.

2-[1-(1-Adamantyl)ethyliminomethyl]-4-methyl-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (IXe). Yield $92 \%, \mathrm{mp} 215-217^{\circ} \mathrm{C}$. IR spectrum: $v 1631 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 0.74 \mathrm{~s}$ and $0.78 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.83 \mathrm{~s}$ and $0.89 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.07-1.98 \mathrm{~m}(21 \mathrm{H}$, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{H}_{\mathrm{Ad}}$), $1.99 \mathrm{~s}\left(3 \mathrm{H}, 1^{\prime \prime}-\mathrm{Me}\right), 2.03-$ $2.15 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.25 \mathrm{~s}(3 \mathrm{H}, 4-\mathrm{Me}), 2.69-2.78 \mathrm{~m}$ $(1 \mathrm{H}, \mathrm{CHN}), 3.35 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9\right), 6.73 \mathrm{~s}(1 \mathrm{H}, 5-\mathrm{H})$, $7.04 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}), 8.13 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.25 \mathrm{~s}$ and $13.30 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 433.33485 . \mathrm{C}_{30} \mathrm{H}_{43} \mathrm{NO}$. Calculated: $M 433.33445$.

2-[1-(1-Adamantyl)ethyliminomethyl]-4-tert-butyl-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (Xe). Yield $81 \%, \mathrm{mp} 76-78^{\circ} \mathrm{C}$. IR spectrum: $v 1630 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 0.75 \mathrm{~s}$ and $0.81 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.83 \mathrm{~s}$ and $0.90 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.03-1.21 \mathrm{~m}$ and $1.31-$ $1.88 \mathrm{~m}\left(21 \mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{H}_{\mathrm{Ad}}\right), 1.26 \mathrm{~s}(9 \mathrm{H}$,
t - Bu), $2.02-2.18 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.0 \mathrm{~s}\left(3 \mathrm{H}, 1^{\prime \prime}-\mathrm{Me}\right), 2.76-$ $2.81 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHN}), 3.34 \mathrm{t}\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9\right), 6.89 \mathrm{~s}$ $(1 \mathrm{H}, 5-\mathrm{H}), 7.32 \mathrm{~s}(1 \mathrm{H}, 3-\mathrm{H}), 8.19 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.32 \mathrm{~s}$ and $13.35 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 475.38139$. $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{NO}$. Calculated: $M 475.37945$.

Salicylaldehyde imines VIIIf, IXf, and Xf (general procedure). A mixture of 1 mmol of salicylaldehyde IV-VI, 10 ml of toluene, $0.18 \mathrm{~g}(1 \mathrm{mmol})$ of pentafluoroaniline, 10 mg of p-toluenesulfonic acid, and $0.27 \mathrm{~g}(2 \mathrm{mmol})$ of anhydrous CaSO_{4} was heated for 30 h under reflux with stirring (until the initial compounds disappeared according to the TLC data). The solvent was distilled off, and the residue was subjected to flash chromatography. The eluate was evaporated, and the bright yellow solid product was recrystallized from methanol.

2-(Pentafluorophenyliminomethyl)-6-(1,7,7-tri-methylbicyclo[2.2.1]hept-exo-2-yl)phenol (VIIIf). Yield $52 \%, \mathrm{mp} 134-136^{\circ} \mathrm{C}$. IR spectrum: $v 1616 \mathrm{~cm}^{-1}$ $(\mathrm{N}=\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.8 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right)$, 0.85 s and $0.89 \mathrm{~s}\left(3 \mathrm{H}\right.$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.32-$ $1.41 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 1.52-1.67 \mathrm{~m}\left(3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.81-$ $1.91 \mathrm{~m}\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 2.09-2.18 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.41 \mathrm{t}$ $\left(1 \mathrm{H}, 2^{\prime}-\mathrm{H}, J=9 \mathrm{~Hz}\right), 6.91 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}, J=8.6 \mathrm{~Hz}), 7.21 \mathrm{~d}$ $(1 \mathrm{H}, 5-\mathrm{H}, J=8.6 \mathrm{~Hz}), 7.51 \mathrm{~d}(1 \mathrm{H}, 3-\mathrm{H}, J=8.6 \mathrm{~Hz})$, $8.8 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 12.65 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+}$ 423.16212. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{NO}$. Calculated: $M 423.16221$.

4-Methyl-2-(pentafluorophenyliminomethyl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (IXf). Yield $54 \%, \mathrm{mp} 142-144^{\circ} \mathrm{C}$. IR spectrum: $\checkmark 1615 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 0.75 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.83 \mathrm{~s}$ and $0.86 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.29-1.39 \mathrm{~m}\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 1.49-$ $1.65 \mathrm{~m}\left(3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.79-1.88 \mathrm{~m}\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right)$, $2.08-2.17 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.31 \mathrm{~s}(3 \mathrm{H}, 4-\mathrm{Me}), 3.3 \mathrm{t}(1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}, J=9\right), 7.13 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=1.2), 7.37 \mathrm{~d}(1 \mathrm{H}$, $3-\mathrm{H}, J=1.2), 8.72 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 12.42 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 437.17812 . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{5} \mathrm{NO}$. Calculated: M 437.17823.

4-tert-Butyl-2-(pentafluorophenyliminomethyl)-6-(1,7,7-trimethylbicyclo[2.2.1]hept-exo-2-yl)phenol (Xf). Yield $66 \%, \mathrm{mp} 98-100^{\circ} \mathrm{C}$. IR spectrum: $v 1614 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 0.79 \mathrm{~s}\left(3 \mathrm{H}, 10^{\prime}-\mathrm{Me}\right), 0.86 \mathrm{~s}$ and $0.91 \mathrm{~s}(3 \mathrm{H}$ each, $\left.8^{\prime}-\mathrm{Me}, 9^{\prime}-\mathrm{Me}\right), 1.3 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.32-1.46 \mathrm{~m}$ $\left(1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 1.52-1.69 \mathrm{~m}\left(3 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.77-1.91 \mathrm{~m}$ $\left(2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 2.05-2.14 \mathrm{~m}\left(1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.38 \mathrm{t}(1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}, J=9\right), 7.05 \mathrm{~d}(1 \mathrm{H}, 5-\mathrm{H}, J=1.2), 7.52 \mathrm{~d}(1 \mathrm{H}$, $3-\mathrm{H}, J=1.2), 8.77 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 12.26 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. Found: $[M]^{+} 479.22474 . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{5} \mathrm{NO}$. Calculated: M 479.22383.

REFERENCES

1. Oleinik, I.I., Oleinik, I.V., and Ivanchev, S.S., Russ. J. Org. Chem., 2008, vol. 44, p. 103.
2. Matsui, S., Tohi, Y., Mitani, M., Saito, J., Makio, H., Tanaka, H., Nitabaru, M., Nakano, T., and Fujita, T., Chem. Lett., 1999, vol. 28, p. 1065; Matsui, S. and Fujita, T., Catal. Today, 2001, vol. 66, p. 61; Matsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Tanaka, H., and Fujita, T., Chem. Lett., 2000, vol. 29, p. 1263; Saito, J., Mitani, M., Mohri, J., Yoshida, Y., Matsui, S., Ishii, S., Kojoh, S., Kashiwa, N., and Fujita, T., Angew. Chem., Int. Ed., 2001, vol. 40, p. 2918; Mitani, M., Mohri, J., Yoshida, Y., Saito, J., Ishii, S., Tsuru, K., Matsui, S., Furuyama, R., Nakano, T., Tanaka, H., Kojoh, S., Matsugi, T., Kashiwa, N., and Fujita, T., J. Am. Chem. Soc., 2002, vol. 124, p. 3327; Ivanchev, S.S., Badaev, V.K., Ivancheva, N.I., and Khaikin, S.Ya., Dokl. Ross. Akad. Nauk, 2004, vol. 394, p. 639; Ivanchev, S.S., Trunov, V.A., Rybakov, V.B., Al'bov, D.V., and Rogozin, D.G., Dokl. Ross. Akad. Nauk, 2005, vol. 404, p. 57; Gagieva, S.Ch., Sukhova, T.A., Savinov, D.V., Tuskaev, V.A., Lysenko, K.A., Bravaya, N.M., Belokon', Yu.N., and Bulychev, B.M., Izv. Ross. Akad. Nauk, Ser. Khim., 2006, p. 1730.
3. Matsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Matsukawa, N., Takagi, Y., Tsuru, K., Nitabaru, M., Nakano, T., Tanaka, H., Kashiwa, N., and Fujita, T., J. Am. Chem. Soc., 2001, vol. 123, p. 6847.
4. Matsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Tanaka, H., and Fujita, T., Chem. Lett., 1999, vol. 28, p. 1263; Matsui, S., Mitani, M., Saito, J., Matsukawa, N., Tanaka, H., Nakano, T., and Fujita, T., Chem. Lett., 2000, vol. 29, p. 554; Makio, H., Kashiwa, N., and Fujita, T., Adv. Synth. Catal., 2002, vol. 344, p. 477; Furuyama, R., Saito, J., Ishii, S., Mitani, M., Matsui, S., Tohi, Y., Makio, H., Tanaka, N., and Fujita, T., J. Mol. Catal. A: Chem., 2003, vol. 200, p. 31; Pärssinen, A., Luhtanen, T., Klinga, M., Pakkanen, T., Leskelä, M., and Repo, T., Eur. J. Inorg. Chem., 2005, p. 2100.
5. Ivancheva, N.I., Badaev, V.K., Oleinik, I.I., Ivanchev, S.S., and Tolstikov, G.A., Dokl. Ross. Akad. Nauk, 2000, vol. 374, p. 648; Ivanchev, S.S., Tolstikov, G.A., Badaev, V.K., Ivancheva, N.I., Oleinik, I.I., Serushkin, M.I., and Oleinik, I.V., Vysokomol. Soedin., 2000, vol. 43,
p. 2053; Ivanchev, S.S., Tolstikov, G.A., Badaev, V.K., Ivancheva, N.I., Oleinik, I.I., Khaikin, S.Ya., and Oleinik, I.V., Vysokomol. Soedin., 2002, vol. 44, p. 1478; Ivanchev, S.S., Tolstikov, G.A., Badaev, V.K., Oleinik, I.I., Ivancheva, N.I., Rogozin, D.G., Oleinik, I.V., and Myakin, S.V., Kinet. Katal., 2004, vol. 45, p. 192; Ivanchev, S.S., Badaev, V.K., Ivancheva, N.I., Sviridova, E.V., Khaikin, S.Ya., Rogozin, D.G., and Abakunchik, A.S., Vysokomol. Soedin., 2005, vol. 47, p. 934; Tolstikov, G.A., Ivanchev, S.S., Oleinik, I.I., Ivancheva, N.I., and Oleinik, I.V., Dokl. Ross. Akad. Nauk, 2005, vol. 404, p. 208.
6. Kheifits, L.A., Shulov, L.A., and Belov, V.N., Zh. Obshch. Khim., 1963, vol. 33, p. 2748; Kheifits, L.A. and Shulov, L.M., Zh. Org. Khim., 1965, vol. 1, p. 1063; Chukicheva, I.Yu. and Kuchin, A.V., Ross. Khim. Zh., 2004, vol. 48, p. 21.
7. Chukicheva, I.Yu., Kuchin, A.V., Spirikhin, L.V., Borbulevich, O.Ya., Churakov, A.V., and Belokon', A.I., Khim. Komp'yut. Model. Butlerov. Soobshch., 2003, vol. 4, p. 9.
8. Kochnev, A.I., Oleinik, I.I., Oleinik, I.V., Ivanchev, S.S., and Tolstikov, G.A., Izv. Ross. Akad. Nauk, Ser. Khim., 2007, p. 1084.
9. Ivanchev, S.S., Tolstikov, G.A., Gabutdinov, M.S., Kudryashov, V.N., Oleinik, I.I., Ivancheva, N.I., Badaev, V.K., and Oleinik, I.V., Russian Patent no. 2 194056, 2002; Byull. Izobret., 2002, no. 34; Ivanchev, S.S., Tolstikov, G.A., Kudryashov, V.N., Ivancheva. N.I., Oleinik, I.I., Gabutdinov, M.S., Badaev, V.K., Oleinik, I.V., Rogozin, D.G., Tikhonov, M.V., Vakhbreit, A.Z., Khasanshin, R.A., and Balabueva, G.Ch., Russian Patent no. 2202559,2003 ; Byull. Izobret., 2003, no. 11; Fujita, T., Tohi, Y., Mitani, M., Matsui, S., Saito, J., Nitabaru, M., Sugi, K., Makio, H., and Tsutsui, T., US Patent no. $6875718,2005$.
10. Still. W.C., Kahn, M., and Mitra, A., J. Org. Chem., 1978, vol. 43, p. 2923.
11. Oleinik, I.I., Oleinik, I.V., Abdrakhmanov, I.B., Ivanchev, S.S., and Tolstikov, G.A., Russ. J. Gen. Chem., 2004, vol. 74, p. 1423.
12. Ipaktschi, J., Chem. Ber., 1984, vol. 117, p. 856.
13. Berkessel, A., Vennemann, M.R., and Lex, J., Eur. J. Org. Chem., 2002, p. 2800.

[^0]: * For communication VIII, see [1].

